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Construct Identification in the Neuropsychological Battery:  

What Are We Measuring? 

Abstract 

Objective: Major obstacles to data harmonization in neuropsychology include lack of consensus 

about what constructs are most important, which tests provide the most information, and whether 

models derived in healthy people are valid in clinical populations. This study aimed to address 

these challenges using data from the National Neuropsychology Network. 

Method: We included 5,000 adult patients from four clinics where patients received care as 

usual. Analyses included variables from the Wechsler Adult Intelligence Scale, 4th Edition, 

Wechsler Memory Scale, 4th Edition (WMS-IV), California Verbal Learning Test, 3rd Edition; 

and Delis-Kaplan Executive Function System (D-KEFS). We used confirmatory factor analysis 

to evaluate models suggested by prior work. Model fit statistics were evaluated and compared to 

models using the same variables in the standardization sample.  We examined relations of factor 

scores to demographic and clinical characteristics.   

Results: For each set of variables, we identified four first-order and one second-order factor.  

Optimal models in patients generally paralleled the best-fitting models in the standardization 

sample, but on the WMS-IV we identified a recognition memory factor, and on the D-KEFS we 

found an inhibition/switching factor that did not fit well in the standardization sample.  The 

memory recognition factor correlated with age more strongly than in the standardization sample. 

Conclusions: NP constructs identified in healthy people are generally valid in heterogeneous 

clinical groups, but recognition memory and inhibition/switching factors may provide unique 

information in patients. The findings support efforts to identify better evidence-based branching 

assessment strategies for precision neuropsychology. 

Masked Manuscript without Author Information
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Key Points 

• Question: This paper asks what neuropsychological constructs are identified by clinical 

test batteries, how these may differ from patterns seen in healthy people, and what 

specific variables are most important.   

• Findings: Models in a heterogeneous clinical sample and the standardization sample are 

very similar, but factors for recognition memory and inhibition/switching appeared in the 

NNN sample and these factors may be clinically relevant. 

• Importance: The findings are important because they indicate we can probably use these 

models to develop better and more efficient assessment strategies. 

• Next Steps: Next steps include specifying the most efficient adaptive methods to measure 

these constructs, and determining what specific individual and cultural differences, and 

what clinical conditions may deviate from these construct definitions, and demand 

development of additional novel strategies.  
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A major challenge for clinical neuropsychology is posed by the diversity of assessment 

tasks and strategies, which has hampered our capacity to harmonize and aggregate data at a scale 

that would enable application of modern psychometric methods to support stronger 

generalization of results and development of better tests. Flexible assessment approaches are 

considered important by most clinicians, but the lack of consensus about exactly what 

neuropsychological constructs are most important and what measurement methods best index 

those constructs has slowed knowledge and methods development.  Neuropsychology has so far 

lacked infrastructure to aggregate data on a scale that would help overcome these challenges. 

 The National Neuropsychology Network (NNN), a multi-center, multiple-PI project 

supported by the NIMH (R01MH118514), was established specifically to promote the use of 

common data elements and data aggregation to advance the empirical basis of 

neuropsychological (NP) assessment (see www.nnn.ucla.edu)(Loring et al., 2021).  Key aims of 

the NNN are to leverage advanced psychometric methods to determine the most salient cognitive 

components of test batteries for use across the heterogeneous diagnostic conditions commonly 

referred for NP assessment.  Four sites (Emory University, Medical College of Wisconsin, 

University of Florida, and UCLA) are aggregating data from clinical NP batteries and depositing 

these data at the item level into the NIMH Data Archive. We have so far enrolled more than 

5,000 participants and have item level data available on more than 2,000 participants on some 

measures.  

 Because the NNN was designed to aggregate real-world NP data from clinics and does 

not prescribe a fixed battery of tests, the data reflect clinical practices in heterogeneity of 

assessment methods. For the analyses reported here, we included tests that are published by 

Pearson, enabling comparison of our results to prior analyses conducted on the original 
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standardization samples.  These included the Wechsler Adult Intelligence Scale, Fourth Edition 

(WAIS-IV)(David Wechsler, 2008), Wechsler Memory Scale, 4th Edition (WMS-IV; Logical 

Memory, Visual Reproductions, Verbal Paired Associate Learning)(D. Wechsler, 2008), 

California Verbal Learning Test, 3rd Edition (CVLT3)(D. Delis, Kramer, Kaplan, & Ober, 

2017); and Delis-Kaplan Executive Function System (D-KEFS; Color-Word Interference, Trail 

Making, and Verbal Fluency tests)(D. C. Delis, Kaplan, & Kramer, 2001).  Even though our sites 

employ flexible rather than fixed batteries, we note that the same tests are among the most 

widely administered not only in our clinics but nationwide, with almost identical measures 

having been the most popular for more than 15 years (Rabin, Barr, & Burton, 2007; Rabin, 

Paolillo, & Barr, 2016). 

 The analyses tested the goodness of fit of competing models describing the factor 

structure of each test or group of tests, based on work originally published in the test manuals 

(for WAIS-IV and WMS-IV) or published in subsequent work using data from the 

standardization sample (CVLT3 and D-KEFS).  We compared our findings in the NNN clinical 

samples to findings from the prior analyses of the healthy participants in the Pearson 

standardization samples.  The factor solutions from the standardization samples have had a 

strong influence on conceptualizations used widely in clinical neuropsychology. For example, 

the WAIS-IV Index scores, based on factor analytic studies, are now widely used in clinical 

interpretation, while Verbal and Performance IQ scores have been abandoned due to lack of 

psychometric support, despite decades of prior use (Weiss, Saklofske, Coalson, & Raiford, 

2010).   

 While widely used, the existing factor analytic evidence in healthy groups is not 

definitive. Some factor analytic studies revealed structures that did not fit well with a priori 
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conceptualizations, and some have shown both low loadings of predicted scores on factors, and 

high correlations among factors, leading to questions about both dimensionality and calling into 

question how best to understand the precise construct(s) that are measured by each test.   

 The factor analytic studies conducted in healthy groups also leave open questions about 

whether the same factor structures generalize to patient populations or may differ in people with 

brain disorders. Neuropathology is expected to alter covariance among tests relative to that 

observed in healthy groups. For example, in a cognitively healthy sample, the correlations may 

be so high between immediate and delayed recall measures that delayed recall may not add much 

information beyond that provided by immediate recall (Millis, Malina, Bowers, & Ricker, 1999; 

Price, Tulsky, Millis, & Weiss, 2002).  But in a sample of patients with mesial temporal lobe 

dysfunction associated with accelerated long-term forgetting (ALF), the discrepancy between 

immediate and delayed recall might emerge as a meaningful and separable factor.  Further factor 

analytic studies in patient groups have generated interesting results but it has been difficult for 

most studies to ascertain sufficiently large samples to enable robust analysis (Collinson et al., 

2017; Staffaroni, Eng, Moses Jr, Zeiner, & Wickham, 2018). 

 The work presented here reflects an initial step to characterize similarities and differences 

in the factor structures of NP tests between cognitively healthy participants and patients with NP 

impairment.  This work also provides insight into the number of dimensions that are likely 

represented in batteries with different numbers of measures and how each test performs 

psychometrically in the assessment of those dimensions.  The results of these analyses aimed to 

inform future development of adaptive or fixed short forms of widely used test batteries, by first 

identifying what constructs are being measured in current clinical practice and assuring that our 
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assumptions about these constructs are justified beyond the standardization samples, in real-

world clinical applications. 

 

Method 

Participants 

Inclusion/Exclusion 

Given that this project involved care-as-usual there were no a priori restrictions on 

inclusion, excepting the study included only adults (ages 18 or older) and only those whose 

primary language was English.  Initially we obtained informed consent (for the first 2,138 cases), 

and during that period we excluded participants if there were concerns about capacity to provide 

informed consent.  Subsequently we received a waiver of informed consent so all clinic patients 

could be included.  For participants older than 89, we coded age as “90+”, consistent with our 

IRB’s definition of personal identifying information (given the small number of individuals in 

this age group, those older than 89 might be more readily identified).   

Demographic and Clinical Variables 

We recorded age, educational attainment, sex, race and ethnicity following protocols 

developed by the National Human Genome Research Institute’s “PhenX” (phenotypes and 

genotypes) project (McCarty et al., 2014), and/or that were endorsed by the NIMH as Common 

Data Elements for demographic variables (Barch et al., 2016).  Our coding of educational 

attainment deviated slightly from that of the PhenX protocol to enable closer matching of our 

education variable with normative standards that require specification of “years of education.”  

The code we used for this, and complete data dictionaries for the NNN database, are available 

online at www.nnn.ucla.edu).   
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When a new patient is enrolled in the NNN project, their site inputs up to 10 diagnostic 

entries for “Pre-Exam Diagnoses.”  Derived from the referral or the medical record, these are the 

presumptive diagnoses prior to the NP exam; some of these are non-specific and used primarily 

for administrative purposes (e.g., ICD-10-CM R41.3, Memory Disorder Not Otherwise 

Specified).  The pre-examination diagnoses were recoded into a series of 10 diagnosis “types” by 

pooling relevant ICD-10-CM codes. The types identified included: (1) neoplasms; (2) 

cerebrovascular disorders; (3) seizure disorders; (4) traumatic brain injuries/closed head injuries; 

(5) anxiety or mood disorders; (6) attention deficit/hyperactivity disorders (ADHD); (7) 

movement disorders; (8) mild cognitive impairment (MCI); (9) other amnestic syndromes; and 

(10) other unspecified symptoms and signs.  The code specifying which specific diagnostic codes 

were included in each category are provided in Supplemental Table 2.  This study was not 

preregistered. 

Human Subjects 

All procedures were conducted with approval from the Institutional Review Boards at 

each site, using reliance agreements implemented by SmartIRB. The UCLA IRB served as the 

IRB of record and submitted the master reliance agreement that the other institutions relied upon. 

Participants are identified by Global Unique Identifiers (GUIDs) or pseudo-GUIDs, as defined 

by the NIMH.  While these identifiers can enable linkage of data for the same person across 

different studies, personal identifying information cannot be reconstructed from GUIDs or 

pseudo-GUIDs.  Some participants underwent multiple neuropsychological evaluations during 

their clinical care; results of the first examination only were included for each examinee.  An 

“examination” was operationally defined as a set of tests administered within a period of 30 

days, intended to represent a single episode of care.  
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Measures Included and Analysis Plan 

Our analysis plan focused first on confirmatory factor analysis of each battery or group of 

test variables to determine if our clinical data fit existing conceptualizations of these measures, 

mostly based on analyses of findings from the original standardization samples used in the 

construction of these instruments.  We expected that our results might differ from existing data 

for several reasons, including: (a) our sample was a clinical sample, while the standardization 

samples specifically excluded individuals with known neuropsychiatric disease; and (b) our 

samples were assessed using flexible clinic procedures that did not demand administration of 

every subtest within each battery of tests, reflecting practice standards to administer only 

selected subtests. In contrast, the standardization datasets included all variables that can be 

derived from a complete administration of the tests.  To be included in our analyses, tests had to 

have at least 100 observations. The target factors and groups of test variables we considered 

were: 

WAIS-IV  

We tested a series of models based on results presented in the WAIS-IV Technical and 

Interpretive Manual ((David Wechsler, Coalson, & Raiford, 2008), pp 64-73).  In the NNN, an 

adequate number of participants were administered all 10 core subtests, so our analyses 

attempted to replicate the factor models for the 10 core subtests as described in the WAIS-IV 

manual. 

WMS-IV 

The WMS-IV was designed to improve upon the factor structure of the WMS-III, given 

that the index score structure was called into question (see (Pearson, 2009); page 6).  The revised 
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structure focused on the Auditory and Visual Memory Index Scores, and on Immediate and 

Delayed Memory Index Scores, all separately from the Visual Working Memory Index.  Our 

clinics, however, collected sufficient data using only Logical Memory, Verbal Paired Associates, 

and Visual Reproductions subtests.  Therefore, we were able to evaluate only the factor structure 

of the Auditory Memory Index, had only two of the four indicators for the Visual Memory Index 

(I.e., VR I and VR II, but not Designs I and Designs II), and for the Immediate and Delayed 

Memory index scores we had only 3 of the 4 relevant variables for each index (I.e., LM I, VPA I, 

VR I for Immediate Memory; and LM II, VPA II, and VR II for Delayed Memory).  We also did 

collect the recognition memory scores for LM, VPA, and VR.  The manual notes that these 

scores tend to be highly skewed, and no index scores were computed from these.  We were 

interested, however, in examining their psychometric properties relative to the other variables. 

CVLT3 

Since our clinics administered the CVLT3 in standardized fashion, we had all the 

variables used in other studies.  We examined our data to see how well they would replicate the 

findings of Donders (Jacobus Donders, 2008). Donders used 13 CVLT-II variables, similar to 

those used in prior work on the children’s version (Jacques Donders, 1999) and in a clinical 

sample (Mottram & Donders, 2005).  We used the same variables but from the CVLT3: List A 

Trial 1; List B; Middle region recall; List A, Trial 5; Semantic Clustering; Recall consistency; 

Short-delay free recall; Short-delay cued recall; Long-delay free recall; Long-delay cued recall; 

Recognition hits; Total intrusions; and Recognition false positives. Donders used maximum 

likelihood confirmatory factor analysis to test the goodness of fit for each of four models and 

found best fit for a solution with four factors, labeled “Attention Span”, “Learning Efficiency”, 

“Delayed Recall”, and “Inaccurate Recall.”   
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D-KEFS 

Our clinics vary considerably in their use of the D-KEFS subtests and also administer other 

versions of specific tests (e.g., other versions of Trail Making Test, verbal fluency tests, and 

“Stroop” color-word interference tests).  We had more than 100 cases each on the D-KEFS Trail 

Making, Verbal Fluency, and Color-Word Interference tests.  There have been several factor 

analytic studies of the D-KEFS (Camilleri et al., 2021; Floyd et al., 2006; Karr, Hofer, Iverson, 

& Garcia-Barrera, 2019; Latzman & Markon, 2010). Latzman and Markon (2010) used 

exploratory factor models to identify D-KEFS structure. Their best-fitting solution included a 

“Conceptual” factor dependent largely on their inclusion of the Sorting Test, which we did not 

include.  Their solution also included a “Monitoring” factor that had loadings on the switching 

variables from the Verbal Fluency test, and an “Inhibition” factor with primary loadings on 

Color Word Inhibition variables and lower loadings on Trail Making Test scores.  The D-KEFS 

Technical Manual also provides information about the correlations among variables within each 

subtest of the D-KEFS (see pp 55-81).   Our ability to replicate these studies was limited by the 

fact that our clinics collected data on only a subset of all measures rather than the entire D-KEFS 

battery.  Our analyses were therefore limited to analysis of Verbal Fluency, Trail Making Test, 

and Color Word Interference test results.  The results from Camilleri et al (2021), who used EFA 

and machine learning approaches to examine D-KEFS structure, would suggest that we might 

expect a two-factor solution based on these tests, with one factor reflecting “Inhibition” and 

loading on both CWI and TMT and another “Fluency” factor.  Savla and colleagues (Savla et al., 

2012) also found EFA to yield a two-factor solution with “Flexibility” and “Abstraction” 

components, but we do not include any of the tests that loaded heavily on their Abstraction 
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factor.  Most amenable to our data is probably the study of Karr et al (2019) that found best fit 

for a three-factor model with “Inhibition” (CWI), “Shifting” (TMT) and “Fluency” (fluency 

scores). 

Confirmatory Factor Analysis Methods 

For each battery, we specified a series of confirmatory factor analytic models based on 

prior research, theory, or a combination of the two. We used full information maximum 

likelihood (FIML) estimation in all models, due to the presence of missing data. FIML 

estimation uses all available data from all individuals. FIML is an efficient method of estimation 

and leads to less biased, more accurate estimates of parameters than do other common 

approaches to handling missing data, such as listwise deletion. 

To evaluate the fit of factor models to data, we report the standard Chi-Square (c2) test of 

model fit. The c2 test is a test of model misfit to the data, so a significant test statistic value 

provides a statistical basis for rejecting a model. One problem with the c2 statistic is that it is a 

direct function of sample size. Thus, if sample size is large, model misfit of trivial magnitude 

may lead to a significant c2 value. Because sample sizes in our NNN data tended to be fairly 

large, we supplemented the statistical test with a number of practical fit indices, including the 

comparative fit index (CFI)(Hu & Bentler, 1998), the Tucker-Lewis index (TLI)(Tucker & 

Lewis, 1973), the root mean square error of approximation (RMSEA) (Browne & Cudeck, 

1992), the standardized root mean square residual correlation (SRMR), and the Bayesian 

information criterion (BIC). To index close fit of a model to data, simulation studies (e.g., Hu & 

Bentler, 1999) lead to the following recommendations: CFI and TLI values should be .95 or 

higher, and SRMR values should be less than .08. For the RMSEA, values of .05 or lower index 

close fit, .05 to .08 good fit, .08 to .10 poor fit, and values over .10 indicate unacceptable fit, BIC 
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values do not fall on any standard distribution but have a notable correction for model 

complexity, and lower values are better. For additional information on fit indices, see (Hu and 

Bentler, 1999) and (K. F. Widaman & Thompson, 2003). 

When reporting fit statistics in later sections, we provide only select indices to avoid 

unnecessary detail. Tables of model fit with all fit statistics are available in Supplemental 

Material. In addition, we developed confirmatory factor models for each battery based on the 

NNN data, and then investigators from Pearson attempted to replicate our results using 

standardization data from each battery. 

Associations of Factor Scores with Participant Characteristics 

We generated factor scores in Mplus using the maximum a posteriori method (using the 

posterior distribution of latent factor scores given the observed data) to examine relations with 

selected demographic and clinical variables.  It should be noted that these scores are only 

estimates, and that the correlations of these scores with other variables will not necessarily yield 

the same result as correlation of the factor with other variables. The standardized factor scores 

generated by MPlus for the best-fitting models were correlated with age and educational 

achievement, and group differences in each of the factors were examined by comparing group 

differences using independent samples t-tests, ANOVAs, or c2 tests, depending on the variables 

of interest. Given that correlations and tests of group differences were examined across all 20 

factors, we used a Bonferroni correction to consider significant only those tests with nominal p < 

.05/20 = .0025.  Demographic and clinical variables examined were: age, education, sex, race, 

and primary pre-examination diagnosis.   

 

 



Construct Identification: What Are We Measuring? 13 

 

Results 

Participant Flow and Test Data Availability 

Among the 5,000 individuals who were enrolled in the NNN project, the analyses 

reported here included results from variable numbers of participants from whom we had data on 

the variables of interest (as specified above, with n > 100 per variable).  Patient characteristics 

are shown in Table 1.  By using the FIML method we were able to estimate scores for cases with 

missing data among those who had one or more test variable within each of the four CFAs, 

resulting in estimated sample sizes for WAIS-IV (n = 1,911), WMS-IV (n = 1,635), CVLT3 

(657), and D-KEFS (n = 535).  We used age-corrected scaled scores except where these were not 

available, which was true only for the recognition variables of the WMS-IV subtests.  

Descriptive statistics for all the scores used in our CFAs are shown in Supplemental Table 3. 

Patients receiving the WAIS-IV were highly likely to have WMS-IV tests (Cohen’s weighted 

kappa = .87), and those receiving CVLT3 were also highly likely to have D-KEFS subtests 

(kappa = .61).   The overlap in administration of WAIS-IV and WMS-IV with CVLT3 and D-

KEFS was lower but still common (kappas ranging from .26 to .39).   

Recruitment Dates and Data Availability 

The patients included in these analyses were enrolled between 08/01/2019 and 

10/01/2021.  The NNN deposits all available data to the NIMH Data Archive (NDA) and 

interested researchers may request access at https://nda.nih.gov/get/access-data.html. Data 

definitions are available on the NDA, and a current data codebook is available at 

https://www.nnn.ucla.edu/downloads/codebook.pdf.    
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Missing Data 

As indicated above, the care-as-usual assessment strategy meant that most patients did 

not have data on all measures. The availability of data depended on: (1) whether tests were 

administered to the patient; (2) whether results of the tests administered were available in our 

database.  The latter was facilitated for Pearson tests because some of our sites used Q-

Interactive extensively, and the NNN project team developed an Application Programming 

Interface (API) that enabled direct transfer of deidentified Q-Interactive data to the UCLA and 

NDA servers.  The available data underestimates the actual use of these instruments, because 

some of our participating clinics continued to use paper-pencil administration, and some data 

from those exams require further data entry.  Data may be missing for many reasons, including 

test selection practices that differ by clinician, clinic, center, and patient factors including their 

age, education, and level of ability.  To our knowledge, missingness was not driven by any 

systematic factor that would be expected to skew or invalidate the results. 

We examined the demographic and clinical characteristics of patients who were included 

versus those not included in each set of analyses for WAIS-IV, WMS-IV, CVLT3, and D-KEFS, 

including patients who had one or more score on these instruments.  These comparisons are 

shown in Supplemental Table 4. These analyses revealed that the patients who had these Pearson 

tests tended to be younger than the rest of enrolled patients. Education level was similar but 

tended to be slightly lower in the group who had these tests.  Males and females were equally 

represented.  There were some differences in race distributions between those who received these 

tests compared to those who did not, but this varied from test to test.  Patients who identified as 

Hispanic or Latino did not receive these tests as often as others.  We examined the distribution of 
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those who had scores on these tests compared to those who did not across sites; the University of 

Florida had lower rates of administration of these tests relative to their overall enrollment, as 

clinicians at this site were more likely to favor paper-and-pencil administration.   

Factor Analysis Results 

The detailed results of our confirmatory factor analyses in the NNN sample are 

summarized in Supplemental Table 5, for the WAIS-IV, WMS-IV, CVLT3 and D-KEFS 

variables, respectively.  These tables provide the model fit statistics for each of the examined 

models for each set of test variables.  The best fitting models for the NNN sample are presented 

in Figures 1a-4a, while the best fitting models for the standardization samples are shown in 

Figures 1b-4b.  Below we summarize results from the best fitting model for each set of variables. 

Please note that we used terms that had previously been used to label the factors in this section, 

but have considered alternate labels that we believe may fit the structure better in our figures and 

discussion.   

WAIS-IV 

NNN Results. A total of 1,911 Individuals were assessed with subtests from the WAIS-

IV so were included in these analyses. Following the models reported in the WAIS-IV technical 

manual, the first model we fit was a model with a single factor. This model, termed Model 1, had 

rejectable fit, c2(35) = 691.59, p < .0001, and poor practical fit to the data, with TLI = .840 and 

RMSEA = .099. 

Model 2 posited the presence of two first-order factors and a second-order factor to 

account for the correlation between the first-order factors. One first-order factor was a Verbal 

factor, with subtests from Verbal Comprehension and Working Memory as indicators; and the 

other first-order factor was a Performance factor, with Perceptual Reasoning and Processing 
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Speed subtests as indicators. Model 2 had better fit than Model 1, c2(34) = 503.52, p < .0001, but 

practical fit to the data was still poor, with TLI = .883 and RMSEA = .085. 

Model 3 hypothesized the presence of three first-order factors and the second-order 

factor. One first-order factor was a Verbal Comprehension factor, the second was a Perceptual 

Reasoning factor, and the third factor had Working Memory and Processing Speed subtests as 

indicators. Model 3 had improved fit to the data, c2(32) = 227.56, p < .0001, and practical fit 

index values of borderline acceptability, with TLI = .948 and RMSEA = .057. 

The fourth model, Model 4, was a model that matched the subtest structure of the WAIS-

IV, with four first-order factors, one each for Verbal Comprehension, Perceptual Reasoning, 

Working Memory, and Processing Speed, and then a second-order factor to account for 

correlations among first-order factors. Model 4 had much improved statistical fit to the data, 

c2(31) = 86.24, p < .0001. Although the statistical fit suggested the model was rejectable, the 

model had very close fit to the data, with TLI = .985 and RMSEA = .031. 

Standardized estimates from Model 4 are shown in Figure 1a. As shown in the figure, 

Similarities (SI), Vocabulary (VC), and Information (IN) subtests loaded on the Verbal 

Comprehension factor; Block Design (BD), Matrix Reasoning (MR), and Visual Puzzles (VP) 

loaded on the Perceptual Reasoning factor; Digit Span (DS) and Arithmetic (AR) were indicators 

on the Working Memory factor; and Symbol Search (SS) and Coding (CD) loaded on the 

Processing Speed factor. Loadings on the first-order factors were all rather large, ranging from 

.67 to .90. The second-order factor is an analog of General Intelligence, and all four loadings on 

the second-order factor were large. The two highest loadings were for Perceptual Reasoning 

(.914) and Working Memory (.926), but the loadings of Verbal Comprehension (.823) and 

Processing Speed (.802) were also substantial. 
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Pearson Results. As mentioned above, these results are similar to those reported in the 

WAIS-IV Technical and Interpretive Manual (Wechsler, 2008) from an analysis performed on 

2,200 individuals between the ages of 16-90 in the standardization sample. The standardized 

estimates from the WAIS-IV standardization data are shown in Figure 1b. The factor loadings in 

the WAIS-IV standardization sample are very close to those obtained in the clinical NNN sample 

with the exception that in the normative data, the best model allowed Arithmetic to load on both 

Verbal Comprehension and Working Memory factors.  

WMS-IV 

NNN Results. For the WMS-IV, 1,635 participants had scores on at least one of the nine 

scores from this battery that were collected under the NNN protocol. The first model, Model 1, 

specified a single, general factor, and had poor fit to the data statistically, c2(27) = 1178.45, p < 

.0001, and practically, with TLI = .718 and RMSEA = .162.  

Based on models presented in the WMS-IV technical manual, we evaluated a second 

model, which had two first-order factors, Visual and Auditory, and a second-order factor that 

accounted for their correlation. This Model 2 had much improved statistical fit, c2 (26) = 528.19, 

p < .0001, but levels of practical fit were still unacceptable, with TLI = .872 and RMSEA = .109. 

Our third model posited three first-order factors and the single second-order factor. In this 

Model 3, the Immediate Recall (I), Delayed Recall (II), and Recognition scores from the Visual 

Reproduction subtest loaded on a Visual Reproduction factor, and similar specifications were 

made to define a Logical Memory factor and a Verbal Paired Associates factor. Thus, the three 

first-order factors were subtest factors. Model 3 had improved fit to the data, c2 (24) = 243.71, p 

< .0001, and levels of practical fit that neared acceptability, with TLI = .940 and RMSEA = .075. 
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The fourth and final model fit to the WMS-IV data was largely the same as Model 3 but 

added a fourth first-order factor that was correlated with the second-order factor. This additional 

first-order factor had loadings from the recognition tasks from each of the subtests (e.g., Visual 

Reproduction recognition, Logical Memory recognition, and Verbal Paired Associates 

recognition). Model 4 also allowed correlated residuals between the Visual Reproduction and 

Logical Memory immediate recall tasks and between the Visual Reproduction and Logical 

Memory delayed recall tasks. Model 4 had much improved statistical fit to the data. Although the 

c2 index was significant, c2 (18) = 51.64, p < .0001 all practical fit indices indicated close fit to 

the data, with TLI = .988 and RMSEA = .034. 

Standardized estimates from Model 4 for the WMS-IV data are shown in Figure 2a. As 

shown, the Immediate Recall (I), Delayed Recall (II), and Recognition (II) Visual Reproduction 

indicators loaded on the Visual Reproduction factor; Immediate Recall (I), Delayed Recall (II), 

and Recognition (II) scores for Logical Memory loaded on the Logical Memory factor; and 

Immediate Recall (I), Delayed Recall (II), and Recognition (II) variables loaded on the Verbal 

Paired Associates factor. For the three subtest-related first-order factors – Visual Reproduction, 

Logical Memory, and Verbal Paired Associates, the immediate recall (I) and delayed recall (II) 

tasks loaded strongly (ranging between .79 and .97), and the recognition indicators had lower, 

but not trivial loadings on these factors (ranging between .42 to .54). Then, for the Recognition 

factor, the loadings were moderate (ranging from .36 to .69). Because of the model specification, 

the three task-related first-order factors represent the ability to recall the specific items on each 

of the tests, and the second-order factor is a General Recall factor. The Recognition factor had 

loadings selectively from the three recognition tasks.  
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Pearson Results. The models above were run using the same subtests from 898 

individuals in the WMS-IV standardization sample (Wechsler, 2009). These individuals 

completed the WMS-IV Adult Battery and were between the ages of 16-69. Like the NNN 

analyses, Model 4 represented the best fit to the normative data, with c2 (18) = 57.44, p < .0001, 

TLI = .983 and RMSEA = .049. The standardized estimates are shown in Figure 2b. Overall, the 

loadings are largely similar to those obtained in the NNN clinical sample. One notable exception 

is that the loadings of the three recognition tasks onto the recognition factor ranged from .16 to 

.34, which is substantially lower than the loadings in the NNN clinical sample, which ranged 

from .50 to 77.  

CVLT3 

NNN Results. As noted previously, we used 13 scores from the CVLT3 to determine 

whether we could replicate in our NNN data (N = 657) the sequence of models evaluated by 

Donders (2008). Model 1 for the CVLT3 specified a single, general factor, and this had poor 

statistical fit, c2 (65) = 654.52, p < .0001, and poor practical fit as well, with TLI = .898 and 

RMSEA = .117. Model 2 allowed two correlated factors, one identified as Accurate Memory 

with 11 indicators, and a second labeled Inaccurate Memory with 2 indicators. Although Model 2 

had improved fit, its levels of statistical fit, c2 (64) = 577.27, p < .0001, and practical fit – TLI = 

.909 and RMSEA = .110 -- were still poor. 

Model 3 identified three correlated factors, which were labeled Immediate Memory (6 

indicators), Delayed Memory (using Donders terminology; 5 indicators), and Inaccurate Memory 

(2 indicators). Model 3 had improved statistical fit, but fit was still unacceptable, both 

statistically, c2 (6-) = 431.54, p < .0001, and practically, with TLI = .930 and RMSEA = .097. 
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Our fourth model (to be described below) was essentially identical to the final, most 

acceptable model presented by Donders (2008), containing four correlated first-order factors. 

Model 4 had fit that was similar to fit reported by Donders (2008) in his analyses. In our NNN 

analyses, Model 4 had a significant test statistic, c2 (56) = 299.84, p < .0001, and practical fit 

indices that were not as high as for our final WAIS-IV and WMS-IV models, but were 

acceptable, with TLI = .951 and RMSEA = .081.  

Donders (2008) retained as most acceptable his four-factor model but did not pursue the 

question of a possible second-order factor. Because final models for the WAIS-IV and the 

WMS-IV based on NNN analyses incorporated a second-order factor, we fit one final model, 

Model 5, which included a general factor to account for or explain the correlations among the 

first-order factors. This model had slightly worse statistical fit, c2 (58) = 303.08, p < .0001, but 

the change in statistical fit was non-significant, Δc2 (2) = 3.24, p =.20, and slightly improved 

practical fit, with TLI = .951 and the lowest BIC value of any of the models considered (see 

Supplemental Material for BIC values). 

The final form of Model 5 for the CVLT3 is shown in Figure 3a. In this model, List A 

Trial 1, List B, and middle region recall (Recall Middle) were indicators for an Attention Span 

factor; List A Trial 5, Semantic Clustering, and Recall Consistency loaded on a Learning 

Efficiency factor; Short-Delay Free Recall, Long-Delay Free Recall, Short-Delay Cued Recall, 

Long-Delay Cued Recall, and Recognition Discrimination Hits loaded on the “Delayed 

Memory” (using Donders’ term) factor; and Recognition False Positives and Total Intrusions 

were indicators for the Inaccurate Memory factor. Three correlated residuals were estimated: 

between the Short-Term and Long-Term Free Recall measures, between the Short-Term and 
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Long-Term Cued Recall scores; and between the Recognition Hits and Recognition False Alarms 

(this last correlated residual was not included in the Donders, 2008, model). 

Factor loadings on the first-order factors were moderate to large, ranging from .51 to .94 

(median = .73). Loadings on the second-order General factor were even stronger. The loadings 

for the “Delayed Memory” (.975) and Learning Efficiency (.925) were the strongest, Attention 

Span had a middling loading (.836), and Inaccurate Memory has the lowest loading (.733). 

Pearson Results. Similar models were run on the CVLT3 standardization sample, which 

included data from 698 individuals between the ages of 16-90 who were administered the 

Standard Form. Similar to the NNN sample, Donders (2008) four-factor model yielded a better 

fit to the data than his other three models. In the Pearson standardization sample, Model 4 

yielded a c2 (56) = 234.03, p < .0001, with TLI = .957 and RMSEA = .067. Model 5, which 

included the general factor accounting for correlations between the first-order factors, was also 

applied to the CVLT3 standardization data. Similar to the NNN data, this model did not yield a 

significantly different fit compared to Model 4, with c2 (56) = 244.22, p < .0001, TLI = .957, and 

RMSEA = .068.  Model 4 is shown in Figure 3b.  

D-KEFS 

NNN Results. For D-KEFS analyses, we had a sample of 535 individuals who had been 

administered at least one of the subtests. As described above, we had adequate data from just 

three of the subtests: Color-Word Interference (4 scores), Trail Making Test (5 scores), and 

Verbal Fluency (3 scores). The D-KEFS technical manual does not provide any factor analytic 

evidence for the subtests, so we approached our analyses in similar fashion to those for the other 

batteries. For example, our first model, Model 1, had only a single, general factor. Model 1 had 
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very poor fit to the data, both statistically, c2 (54) = 340.91, p < .0001, and practically, with TLI 

= .791 and RMSEA = .100. 

As a second model, we fit three first-order factors that were specified in a test-based 

pattern, so all four indicators from the Color-Word Interference test loaded on a Color-Word 

Interference factor, all five scores from the Trail Making Test loaded on a like-named factor, and 

the three scores from the Verbal Fluency test loaded on a Verbal Fluency factor. In addition, we 

retained a second-order factor to explain the correlations among the first-order factors. This 

model, Model 2, had much improved statistical fit, c2 (49) = 80.45, p = .003, and practical 

indicating close fit, with TLI = .975. 

Because assessment of the ability to deal with tasks involving inhibition or switching is a 

key aspect of the D-KEFS battery, we engaged in a final model specification to identify an 

Inhibition/Switching factor. In this model (Model 3; shown in Figure 4a), Color Naming and 

Word Reading loaded on a Color-Word Interference factor; Letter Sequencing, Number 

Sequencing, Motor Speed, and Visual Scanning loaded on a Trail Making factor; and the 

Standard versions of Category Fluency and Letter Fluency were the indicators for a Verbal 

Fluency factor. The Inhibition/Switching factor had loadings from the Inhibition and 

Inhibition/Switching scores from Color-Word Interference, the Number-Letter Switching score 

from the Trail Making Test, and the Standard version Category Switching from the Verbal 

Fluency test. After fitting this model, a single additional factor loading was estimated, the 

loading of the Category Switching score from the Verbal Fluency test on the Verbal Fluency 

factor. This model had very good fit to the data, both statistically, c2 (48) = 60.59, p = .10, and 

practically, with TLI = .990 and RMSEA = .022. 
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Standardized estimates from D-KEFS Model 3 are shown in Figure 4a. Factor loadings 

on first-order factors were quite strong, averaging about .80, except for the rather small loading 

(.18) for Category Switching on the Inhibition/Switching factor. Loadings on the second-order 

factor were relatively strong. Interestingly, the loading of the Inhibition/Switching factor (.989) 

on the General factor was clearly the highest loading among the four first-order factors. 

Pearson Results. These same models were run on 890 individuals between the ages of 

18-89 from the D-KEFS standardization sample. Like the NNN data, Model 1 represented a poor 

fit statistically, c2 (54) = 938.31, p < .0001, and practically, TLI = .741 and RMSEA = .136. 

Model 2 was a significantly better fit to the data, with c2 (49) = 195.76, p < .0001, and TLI = 

.942 and RMSEA = .058. Model 3, which specified an Inhibition/Switching factor, did not fit the 

data as well as Model 2 either statistically [c2 (48) = 314.56, p < .0001] or practically (TLI = .89 

and RMSEA = .079). This model is shown in Figure 4b. 

Relations of Factor Scores to Demographic and Clinical Characteristics 

Age and Education 

The correlations of the twenty best-fitting factor scores with age and educational 

achievement are shown in Supplemental Table 6.  

After Bonferroni correction we found age was correlated significantly with multiple 

variables from: (1) CVLT3 (including the General, Attention, Learning, Delay, and Inaccuracy 

factors); (2) WMS-IV (General and Recognition factors); and (3) D-KEFS (Verbal Fluency 

factor).  There were no significant correlations with any of the WAIS-IV factors.  All significant 

correlations were negative, indicating poorer performance in older patients, but effects were 

small (with |r| < .18, except for the Recognition factor from the WMS-IV, which had a 

correlation with age of r = -.527 (95% confidence interval: .49 - .56). Given this large correlation 
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was observed on a factor derived from subtest scores that were not age corrected, we examined 

the relations of age with the contributing variables in the standardization sample data, to 

determine if we could create age-corrected scaled score for these variables even though these are 

not routinely reported by the Pearson scoring programs. We found the correlations of age with 

Logical Memory recognition (r = -.02), and with Verbal Paired Associates and Visual 

Reproductions (r = -.20) were substantially below the 95% confidence interval for the observed 

correlation of age with Recognition in the NNN sample.  As noted in the manual, these 

recognition test scores are also negatively skewed in the standardization sample.  Therefore, we 

did not attempt to construct age-corrected scores on these measures. We did examine the 

scatterplot of Recognition factor scores as a function of age and noted an apparent acceleration 

of age-related decline in patients over the age of 60 (see Figure 2). This impression was 

corroborated by fitting a quadratic equation to the curve, which increased the shared variance 

with age from R2 = .278 to R2 = .372.  

 After Bonferroni correction we found educational achievement was correlated 

significantly with every factor, with minimum r = .172, and maximum r = .481.  These positive 

correlations all indicate better performance is associated with higher education.  These 

correlations tended to be higher for the WAIS-IV factors (range of r = .398 to .481), followed by 

WMS-IV (range of r = .172 to .351), and lower for CVLT3 and D-KEFS factor scores (range of r 

= .226 to .255).   

Sex 

 Due to the small numbers of individuals who identified as Intersex or other responses we 

tested for differences on the factors between those who indicated identification as males or 

females (see Supplemental Table 7).  There were significant (Bonferroni corrected) differences 
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on: (1) all WAIS-IV factors except Processing Speed; these differences were small (Cohen’s d < 

.20) with males having higher scores; (2) WMS-IV Logical Memory and Recognition factors; 

these differences were small (absolute value of Cohen’s d < .22) with females having higher 

scores; and (3) all CVLT3 factors; these differences were of medium size (absolute value of 

Cohen’s d ranging from .29 to .34) with females having higher scores.  There were no sex 

differences on D-KEFS factors.  

Race and Ethnicity 

 As an NIH-sponsored research project, we collect self-report data about race and 

ethnicity following NIH guidelines but remain concerned that these labels and categories fail to 

capture important information about individual and cultural differences.  We are collecting 

further data systematically on social determinants of health that we hope may be more 

informative, but meanwhile, we report our findings to help highlight the importance for research 

on NP function to move beyond the NIH categories.  For the analyses reported here, due to small 

sample sizes in all races other than White and Black, we collapsed all individual who did not 

identify as members of either of these groups as “Other”, and examined group differences across 

the three categories: White (total n = 4,014), Black (total n = 597), and Other (total n = 389)(note 

these totals are for the entire sample of 5,000, and the number of people taking specific tests was 

lower; see Supplemental Table 8).  Because several factors showed heterogeneity of variance 

across groups, we used the IBM SPSS Statistics Version 27 robust tests of equality of means and 

interpreted the Welch tests, using a Bonferroni corrected alpha level of p < .0025 to claim a 

difference as significant.  Most factors showed significant effects across groups, including all 

WAIS-IV factors, all WMS-IV factors, and all CVLT3 factors except Inaccuracy.  None of the 

D-KEFS factors passed our significance test, but there were trends in the same direction.  In all 
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these analyses scores in the Black group were lower than those in the White and Other groups.  

Effect sizes for these overall group differences were small to medium Eta Squared < .10), but the 

pairwise differences between groups (e.g., White compared to Black; Black compared to other) 

were sometimes large (e.g., for the WAIS-IV Verbal Comprehension factor, White/Black 

Cohen’s d = .945; and Other/Black Cohen’s d = 1.038).   

 We had small samples of people who identified as Hispanic or Latino, or who indicated 

their ethnicity as “unknown.”  Because many of the cell sizes had fewer than 50 observations, we 

did not analyze these data further. 

Pre-Exam Diagnoses 

We examined the effects of Pre-Exam Diagnosis Type (9 categories, including: 

neoplasms, Cerebrovascular disorders, seizure disorders, traumatic brain injury or closed head 

injury, mood or anxiety disorder, ADHD, movement disorders, MCI, and other unspecified 

symptoms and signs of neurological disease (see Supplemental Table 9) on each of the 20 

factors, using ANOVA. Tests of between-groups effect on each of the 20 factors revealed main 

effects with p < .0025 for most WAIS-IV, WMS-IV and CVLT3 factors but not on D-KEFS, 

with effect sizes ranging up to eta-squared > .12.  We did an additional MANOVA on the WAIS-

IV first-order factor scores, which showed significant main effects of diagnosis (F[8,1310] = 

20.57, p < .001) and a diagnosis by factor interaction (F[18.3, 3930] = 2.45, p < .001, with 

Greenhouse-Geisser df adjusted due to a violation of sphericity (Mauchly’s W = .579, df=5, p < 

.001), but the main effect of diagnosis reflected relatively large effect sizes (up to 1 SD 

difference in factor means between groups, while the within diagnostic group means differed by 

less than 0.2 standard deviations (see Supplemental Figure 1).  The lowest scores were observed 

in the seizure disorder group (with average scores about .5 SD below the grand mean) and 
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highest scores in the anxiety and mood disorders and ADHD groups (approximately .5 SD above 

the grand mean).  Cerebrovascular and MCI groups had intermediate values that were about 0.2 

SD below the grand mean. 

Discussion 

Overview 

The results demonstrate generally good replication in the NNN clinical sample of the 

factor models identified in prior work using data from healthy participants in the standardization 

samples.  These results are striking, given the fact that our clinical samples involved a broad 

range of patients with heterogeneous disorders, and that the constituent tests were administered 

in various combinations at the NNN sites.   These findings are reassuring that many widely held 

assumptions about the NP constructs assessed by these instruments are valid in “real world” 

clinical settings.  We also identified some interesting and potentially important differences 

between results in the standardization samples and our clinical sample. These differences suggest 

that some factors may emerge selectively in samples where neuropathology has disrupted the 

normal patterns of association among test variables. While many clinical neuropsychologists 

would have suspected this would be the case based on their clinical experience, there have so far 

been few empirical studies demonstrating the validity of this intuition.  The sample sizes already 

available through the NNN appear to help make this kind of analysis feasible.  Follow-up studies 

carry the potential to further specify the conditions under which normative patterns of 

association break down, opening the possibility that NP batteries of the future might incorporate 

branching logic based on discrepancies between scores that signal the likelihood of pathology.  

Factor Analytic Findings 
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We found that for each instrument or set of tests (i.e., group of tests often administered 

together, such as WAIS-IV, WMS-IV, and D-KEFS subtests), the best-fitting solution involved 

four first-order factors and one second-order factor.  The first-order factors generally replicated 

prior findings on these tests as discussed further below. The second-order factors, reflecting 

shared variance across the first-order factors, may be considered “general” in the context of the 

instrument(s) from which they emerged.   

WAIS-IV 

Analysis of the ten WAIS-IV core subtests generally validated the “four-domain” 

structure that is specified in the WAIS-IV Technical Manual, and that has been codified in the 

WAIS-IV Index scores: Verbal Comprehension, Perceptual Reasoning, Working Memory, and 

Processing Speed.  Our results are so similar to the findings in the WAIS-IV Manual that we can 

conclude that measurement invariance is likely at least at the configural level as defined by 

Widaman and Reise (Keith F Widaman & Reise, 1997).  The individual loadings of variables on 

the factors is also sufficiently similar to suggest that metric invariance probably holds across the 

NNN and WAIS-IV standardization samples. While our analyses involved separate factor 

analyses in the NNN and standardization samples, next steps could include testing for scalar 

invariance using multigroup factor analysis.  We are confident that such analyses would show 

that there are significant differences in the factor means, given that we know the NNN patient 

samples had lower scores on many of the individual subtest scores.  For example, WAIS-IV 

Index and subtest scores conform to the “classic” pattern identified by Wechsler (D. Wechsler, 

1958); see also (Bilder, 1985; Bilder et al., 1992; Bilder, Mukherjee, Rieder, & Pandurangi, 

1985) where “hold” tests are insensitive to pathological processes (e.g., Information, 

Vocabulary), while others are more sensitive (e.g., Digit Symbol or Coding).  In the NNN 
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sample, we see that Vocabulary, Visual Puzzles and Similarities all have Age Corrected Subtest 

Scores (ACSS) of 10 or higher (at or above the standardization sample mean), while Letter 

Number Sequencing, Block Design, and Coding all have ACSS less than 9, revealing up to about 

½ standard deviation deficit relative to normative standards (see Supplemental Table 3).  In the 

multigroup factor analysis we could specify with precision exactly what the difference is 

between estimated group means on each factor.  From inspection of the observed index scores, 

we expect the factor scores in our NNN sample would be very close to the standardization 

sample mean for some index scores (e.g., the average VCI was 99.8 in the NNN sample, very 

close to the standard score of 100), but about 1/3 SD below the standardization sample mean for 

WMI and PSI, which were 95.42 and 94.74 in the NNN sample.   

 The WAIS-IV factor analysis also suggests that 8 subtests might work as well and be 

more efficient than the currently recommended 10 core subtests to specify both index scores and 

FSIQ.  Specifically, for the factors that currently require 3 subtests, it may be possible to reduce 

assessment to two indicators per factor without a major sacrifice of measurement precision.  For 

the Verbal Comprehension factor, the Information subtest had the lowest loading and highest 

measurement error, while for the Perceptual Reasoning factor, Visual Puzzles had the lowest 

loading and highest measurement error.  Elimination of these two subtests would save 

approximately 11 to 16 minutes, based on estimates of administration time from Q-Interactive 

and from the comparable subtests on the WISC-V in 16-year-olds (Wechsler, 2014). Reliability 

of the Verbal Comprehension factor in the NNN sample would drop from standardized alpha = 

.88 to standardized alpha = .87 if Information were not included.  Similarly, the reliability of the 

Perceptual Reasoning factor would drop from standardized alpha = .81 to standardized alpha = 

.79 if Visual Puzzles were dropped. The reliability of the second-order WAIS-IV factor (i.e., the 
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factor most closely related to FSIQ) would drop only from a standardized alpha of .941 to .935 

after excluding both subtests. These results parallel those reported by Umfleet and colleagues 

who showed that two-subtest prorated scores correlated highly (r=.96 to .97) with three-subtest 

index scores (Umfleet, Ryan, Gontkovsky, & Morris, 2012)).  The WISC-V provides another 

example in which only two subtests were used to identify index scores with good precision of 

measurement and clinical utility (DJSAPC Wechsler, 2014; Weiss, Saklofske, Holdnack, & 

Prifitera, 2015).   

 It is also important to highlight that the factor loadings on the general factor are so high 

that if the assessment goal is to measure general ability, there are clearly more parsimonious 

measurement methods that can be specified. The NNN sample may be useful to determine what 

“short forms” may be effective in clinical populations. In our sample Verbal Comprehension and 

Processing Speed factors had slightly lower loadings and higher error relative to Working 

Memory (WM) and Perceptual Reasoning (PR) factors.  The same pattern appeared also, 

however, in the Holdnack et al (2011) analysis combining variables from WAIS-IV and WMS-

IV, with highest loadings on ‘g’ from WM and PR factors.  It may be that this feature holds 

across both healthy and clinical samples, but further work with subpopulations may lead to 

discovery of syndrome-specific predictors.  Meanwhile, our findings in the clinically 

heterogeneous NNN sample, which appear to replicate the findings of Holdnack and colleagues, 

suggest that measures of WM and PR alone might characterize ‘g’ with relatively high precision 

and efficiency.   

WMS-IV 

Confirmatory factor analysis of the WMS-IV identified four first-order factors, and 3 of 

these 4 were subtest-specific, reflecting shared variance within the Logical Memory (LM), 
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Visual Reproductions (VR) and Verbal Paired Associates (VPA) variables.  The lack of fit for 

models specifying “auditory” and “visual” learning and memory factors may be linked to our 

inclusion of only three of the WMS-IV subtests. Our findings also did not identify a separable 

“delayed recall” factor, replicating prior work on the WMS-III (Millis et al., 1999; Price et al., 

2002), and that were corroborated in CFA of the WMS-IV and WAIS-IV (Holdnack, Xiaobin, 

Larrabee, Millis, & Salthouse, 2011).  These findings illustrate how the high correlations 

between immediate and delayed recall variables make it difficult to justify the inclusion of 

delayed recall measures on purely psychometric grounds in either the standardization sample or 

our clinically heterogeneous NNN sample. Millis and colleagues (1999) highlighted the need for 

larger samples of clinical cases that might reveal separable delayed recall factors and noted that 

there were so far limited data available to address this problem.  While these initial analyses of 

the NNN sample do not support the separate identification of delayed recall, as the NNN study 

progresses we aim to have sufficient samples of patients with memory deficits including 

amnestic syndromes, which would serve to better examine this hypothesis. 

One factor identified in our analyses that was not found clearly in prior work nor in our 

re-analysis of the WMS-IV standardization sample, is the Recognition factor. This is particularly 

interesting given a long history highlighting “recollection” and “familiarity” as potentially 

dissociable processes (James, 1890) and more recent work in cognitive neuroscience 

emphasizing the value of dual-process recollection/familiarity models that explain many aspects 

of recognition memory (Yonelinas, 2002; Yonelinas, Aly, Wang, & Koen, 2010).  In brief, these 

models indicate that recall involves both active search and retrieval checking, while recognition 

memory requires only the latter process.  Of high importance to clinical neuropsychology is the 

assertion that the hippocampus is critical for recollection processes that facilitate active recall, 
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while familiarity sufficient to enable adequate recognition performance may be mediated by non-

hippocampal cortical systems, and some investigators have focused on perirhinal regions as 

particularly important (Quamme, Yonelinas, Widaman, Kroll, & Sauvé, 2004; Yonelinas et al., 

2010; Yonelinas et al., 2007). “Remember/know” task paradigms have further promoted 

understanding of these distinctions (Dudukovic & Knowlton, 2006; Tulving, 1985).  Recent 

formulations further emphasize the possibly unique roles of “binding”, “pattern 

completion/separation”, and “contextual precision” as contributors to episodic memory with 

potentially specific functional anatomic correlates (Ekstrom & Yonelinas, 2020). 

 These distinctions are of high theoretical interest, but controversy remains about their 

validity and some investigators suggest that an integrated declarative memory system better 

explains the evidence (Squire, Stark and Clark, 2004; Squire, Wixted & Clark, 2007). There are 

also psychometric concerns, specifically it has been suggested that differences between recall 

and recognition tests are confounded by difficulty level, because recall/recollection tasks are 

usually more difficult than recognition/familiarity tasks, and thus have greater discriminating 

power (Calev & Monk, 1982).  Classic studies also have shown task manipulations can make 

recognition more difficult than recall (Tulving, 1968). This evidence suggests that preserved 

recognition relative to recall in many assessments may be explained by the severity of 

generalized deficit rather than a differential deficit in a specific anatomic system. Similar 

arguments have been made to suggest that delayed recall deficits may simply be artifacts of more 

severe generalized deficits at the encoding stage that are not effectively controlled when 

assessing immediate versus delayed recall, and that psychometric matching is critical to reveal 

differential deficits (Javitt, Rabinowicz, Silipo, & Dias, 2007; Lencz et al., 2002).   
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Despite these reservations, there is evidence supporting possible clinical utility of these 

results, from demonstrations of double dissociations that support the validity of the 

recollection/familiarity distinction in studies of patients with temporal lobe epilepsy (Bowles et 

al., 2010) and patients with Parkinson’s disease (Cohn, Moscovitch, & Davidson, 2010).  We 

further believe that clinicians usually interpret recognition results relative to other indicators of 

encoding (learning) and consolidation (forgetting).  We hope that these results from the NNN 

sample, showing that a recognition factor is well identified with widely used tests, may help 

advance these interpretive efforts by enabling more widespread and reliable measurement of 

recognition relative to learning and recall variables, and lead to further interest in developing 

new paradigms that enable tests of the recollection/familiarity distinction in everyday clinical NP 

practice. 

 In addition to the first-order factors, our CFAs also revealed a second-order factor, that 

had high loadings on all three of the test-specific recall or “recollection” first-order factors, and a 

lower loading on the recognition factor.  We suggest that this general factor might best be 

understood as a general recall/recollection factor, given that our CFA results enabled 

specification of a separate recognition factor.  We note further that the uniqueness of these 

factors is supported by their external correlations with age, as discussed further below. 

CVLT3 

Our CFAs found good fit for the Donders model with four factor that he specified as 

“Attention Span” , “Learning Efficiency”, “Delayed Recall”, and “Inaccurate Recall” (Jacobus 

Donders, 2008).  Attention Span is a label that appears to capture well the capacity for immediate 

recall of material on CVLT Trial 1 and List B.  Like Donders we find the middle recall variable 

has a slightly lower loading on this factor.  It may reflect WM capacity to the extent that those 
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individuals with greater WMC are more likely to have increased recall from regions of the list 

that are outside primacy and recency regions. 

The second factor, with highest loadings on learning slope, semantic clustering, and 

recall consistency, appears very similar to Donders’ factor, which he appears to have derived 

from a similar term used in the manual (“Recall Efficiency”).  With learning slope having the 

highest loading on our factor, we believe “learning consistency” may be a more appropriate 

descriptor. 

Not surprisingly, both short and long, cued and free recall measures loaded on a single 

factor, which Donders referred to as “delayed recall,” but we refer to as “recall and recognition” 

because it also includes recognition discriminability.  This factor also loaded most strongly on 

the second-level factor that has high loadings of all four CVLT3 factors.  The fit of this model 

benefited markedly by permitting correlated variances between the short- and long-delay free 

recall measures, and between the short- and long-delay cued recall measures, further justifying 

the use of the label “recall and recognition” rather than “delayed recall.”  This replicates other 

work showing that the correlations are so high between short- and long-delay recall measures 

that it may be challenging to tease out the effects associated with decrement over delay, except in 

more specific subpopulations (e.g., people with amnestic syndromes)(Millis et al., 1999; Price et 

al., 2002). 

We also replicated Donder’s “inaccurate memory” factor but note that this in part 

benefited from specifying correlated variances between recognition discriminability and false 

positive responses.  It is interesting that the false alarms fit well on inaccurate memory while 

recognition hits fit best on the recall-recognition memory factor, suggesting that a positive 

response bias is more relevant to inaccuracies than misses. 
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D-KEFS 

The best solution for D-KEFS measures we included (Color-Word Interference (CWI); 

Trail Making Test (TMT); and Verbal Fluency (VF)) is similar to that of Karr and colleagues 

(Karr et al., 2019).  We found: (1) A first-order factor loading only the color-naming and word-

reading subtests of the CWI, probably best understood as speed of processing for automatized 

language skills; (2) A first-order factor including most TMT components, and another first-order 

factor loading the VF components; we would consider both of these task-specific factors; and (3) 

A first-order factor including inhibition and switching measures from VF, TMT and CWI tests. 

In contrast, other investigators identified two-factor solutions that essentially separated timed 

tasks from abstraction tests. Our analysis would be unlikely to identify an “abstraction” factor 

given we did not include Word Context, Twenty Questions, Proverb, Sorting, or Tower Tests 

(Camilleri et al., 2021; Savla et al., 2012).  Our solution is also simpler than a model that 

emphasized CHC theory and had representations of other tasks that likely highlighted non-

executive cognitive abilities (Floyd, Bergeron, Hamilton, & Parra, 2010).  

A notable difference emerged between our CFA and our attempts to fit the same models 

with data from the standardization sample.  In the standardization sample, model fit was not 

improved by the additional specification of an “inhibition-switching” factor, but this clearly 

improved goodness of fit in the NNN data.  We believe this is likely the result of 

neuropathological change in our patient samples that increases variability of these scores, similar 

to the improvement of fit that what we observed on the WMS-IV when we specified a separate 

recognition memory factor.   

We note also that Category Switching from the Verbal Fluency subtest had cross-

loadings, with a strong loading on the Fluency factor than on the Inhibition/Switching factor.  
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This raises a question about the utility of this condition, given that it may be more closely related 

to fluency than to switching.  It seems likely that verbal fluency is already adequately measured 

by Category and Letter fluency tests, and that the addition of the switching condition adds little 

to the measurement of the inhibition/switching construct. 

Relations of Factor Scores with Demographic and Clinical Characteristics 

Age 

Given that we used age-corrected scores for most of the variables used in our analyses, 

normal age-associated trends should be removed and our findings may be interpreted best as the 

additional associations of age with the factors, that may be attributed to age-associated 

neuropathology, particularly given clinical referral and sampling issues (i.e., older patients are 

more likely to have Alzheimer’s disease, Mild Cognitive Impairment, and Movement Disorders, 

while younger patients are more likely to have ADHD, Anxiety/Mood Disorders, Seizure 

Disorders, and Traumatic Brain Injury).  Thus, it was not surprising that we saw modest 

correlations (|r| < .18) with multiple factor scores.   

In contrast, there was the large correlation of age with the Recognition factor, showing 

worse recognition performance with age and possible steeper decline at ages over 60 (Pearson r 

= -.527; linear R2 = .278; quadratic R2 = .372).  We examined the possibility that this might 

reflect the fact that the WMS-IV recognition subtest variables were not age-corrected, but 

examination of the standardization sample data showed this could not account for a correlation of 

this magnitude. It seems likely that this reflects a clinically significant difference between the 

NNN and standardization samples, either due to age or the neuropsychological syndromes that 

are most associated with age in our patients. Regardless of the cause of this association, it 

indicates that recognition memory performance might be highlighted for its sensitivity in clinical 
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samples.  Further, as discussed above with respect to the recollection/familiarity distinction, we 

believe our findings support further development of quantitative indicators of recognition 

memory performance that can help further investigate possibly dissociable causes of memory 

impairment. 

Sex 

We found small sex differences on multiple variables, including all WAIS-IV factors 

except processing speed, all CVLT3 factors, and all WMS-IV factors except the Visual factor, 

but there were no sex effects on the D-KEFS factors.  On the WAIS-IV factors there were small 

effects (Cohen’s d < .2) with scores of males higher.  The CVLT3 factor effects were slightly 

larger (d ~.3) and favored females, while WMS-IV differences were also small <.22) with 

females doing better.  It is tempting to speculate that males may tend to manifest slightly greater 

preservation of some crystallized intellectual abilities, while females may possess great resilience 

against age-associated declines in memory function, but further examination of these differences 

would be necessary to determine if these sex differences are primarily attributable to clinical 

conditions, site differences or other possible confounds. 

Race & Ethnicity 

Given that our overall sample was 80.3% White, 11.9% Black, and the balance of 

patients indicated other racial group identities, indicated race was unknown or preferred not to 

specify, our analyses were limited in examining effects of race, and we could only examine 

effects of race by comparing NIH categories of White, Black and “Other” combining all other 

groups of respondents.  Effect sizes, specified using the omega-squared random-effects point 

estimate, ranged up to 5% variance explained in factor scores by race.  In these comparisons the 

group identified as Black tended to have lower scores than the White and Other groups, and 
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direct comparisons suggested that patients who identified as Black had scores almost one 

standard deviation lower than the White or Other groups. These disparities are of great concern, 

and it is not possible given the structure of our study to determine what biases in referral 

processes (i.e., patients from racial minority groups may not be referred until their cognitive 

disorders are more severe), diagnostic confounds (i.e., Black patients were more likely to be seen 

for cerebrovascular disorders and epilepsy than for ADHD or Anxiety and Mood Disorders), or 

other factors, including test measurement biases.  We hope that by accumulating more data that 

enables us to rule out some of these possible confounds will permit us to examine the 

psychometric properties of our tests to help overcome biases that are built into our current 

assessments.  Given that our inclusion-exclusion criteria limited our sample only to those who 

had English as their primary language, our analyses of ethnicity were further limited by small 

sample sizes of groups identified as Hispanic or Latino (n’s < 50), so we do not interpret these.  

We believe it will be important in the future to expand the NNN sampling strategy to include 

patients who speak other languages and create special outreach to Hispanic/LatinX communities 

to learn more about neuropsychological profiles and psychometric issues that may impact 

interpretation of neuropsychological findings in these patients. 

Pre-Exam Diagnoses 

 This study was limited to inspection of some effects associated with diagnoses provided 

prior to the NP exam.  These “referral diagnoses” are not definitive, and often considered 

tentative pending results of the NP exam and other diagnostic procedures. With those 

reservations, it is interesting that we observed substantial differences between patients who prior 

to our exams had diagnoses of Epilepsy (and had lower factor scores) relative to groups who had 

diagnoses of Anxiety or Mood disorders (who had higher scores), and patients with 
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Cerebrovascular disorders or Mild Cognitive Impairment had intermediate scores.  The 

discrepancy between the highest and lowest performing groups was about 1 standard deviation – 

a large difference.  While we look forward to conducting more definitive studies of diagnostic 

outcomes in the future, it is interesting that these differences exist already at the stage of referral 

for NP assessment.  These observations are consistent with the suggestion that NP examinations 

should be tailored flexibly to the diagnostic questions at hand, given that different test 

procedures are more likely to enhance sensitivity and specificity of findings in groups that vary 

so widely in ability.  We believe this practice is already common in many NP clinics nationwide 

but believe results like these from the NNN may help provide an empirical basis for the creation 

of flexible and efficient batteries that are informed by referral issues. 

 

 

 

Next Steps 

 We believe the current results from the NNN sample are promising and indicate that this 

emerging data resource can be useful for the field. We see multiple avenues for future 

investigation based on the findings reported here, including: 

1. Examining factor structures in samples that represent specific, more homogeneous diagnostic 

groups; for example, comparisons of left vs. right hemisphere temporal lobe epilepsy, 

comparisons of patients with amnestic vs non-amnestic MCI, and examination of groups 

defined by specific psychiatric syndromes or comorbidities. 
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2. Direct comparisons of individual case data between the NNN and standardization samples to 

estimate the most efficient methods for identification of patients with specific 

neuropsychiatric syndromes. 

3. Examining the multiple possible causes of test-score disparities leading to observed 

differences between groups defined by race, ethnicity, language or other social determinants 

of health. 

4. Examining reasons for missing data and assessing the possibilities that non-random missing 

data may impact the findings.  There are myriad potential sources of bias and confound given 

the clinical ascertainment strategy and care as usual assessment methods.  With sufficiently 

large samples, however, we hope to determine how much these factors limit generalization 

from our findings.  

5. The current results focus only on test-level findings, and from only a subset of all tests.  We 

are eager to examine complete batteries, and to extent this work to the item level, that may 

help determine substantially more efficient methods for the future.   

6. The current findings have included only the pre-assessment diagnosis and have not included 

outcome measures.  We are eager to continue our project and have available sufficient data 

on important outcomes to assess the predictive validity and ecological validity of NP tests.  

Similarly, we are eager to combine these data with other datasets including biomarkers, 

neuroimaging data, and other variables that may help validate NP test methods with respect 

to biological indicators of neuropathology. 

 

Limitations and Constraints on Generality 
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 There are several limitations to this work that should be recognized.  First, the NNN is 

unusual in its primary aim to reflect clinical practice in real-world settings and therefore 

necessarily does not incorporate the kinds of constraints on sampling inclusion/exclusion criteria 

and methods that are customarily involved in research studies. The ascertainment of cases so far 

reveals racial and ethnic disparities that we believe should be followed up with specific outreach 

strategies.  Second, while our clinics were selected to provide a diversity of cases and regional 

perspectives, the four initial sites for the NNN are all major academic centers that serve as 

tertiary referral hubs, and this may bias cases seen. Third, the NNN is still in the process of 

aggregating data, so this paper includes only part of all information that will be available in the 

future, and that will more fully represent the scope of both the examinations and diagnostic 

outcomes for our patients. Fourth, this work faces psychometric challenges inherent in factor 

analyses involving missing data, and future work can usefully consider how to develop models 

of missing data generation mechanisms that may have caused part of the data to be missing due 

to site, clinician, or patient characteristics.  We hope that continued ascertainment within the 

NNN and extension of the NNN to include additional sites will help overcome these limitations 

and help maximize the yield of this project. 
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Figures 1 to 4: Structural models of the four CFAs in the NNN Clinical Sample and the 
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Figure 1 
WAIS-IV Structural Model 

a) NNN Sample 
 

 
b) Standardization Sample (reproduced with permission from Pearson) 

 
 

  



Figure 2 
WMS-IV Structural Model 

a) NNN Sample 

 
b) Standardization sample 

 
 
  



Figure 3 
CVLT3 Structural Model  

a) NNN Sample 

 
b) Standardization Sample 

 



Figure 4 
D-KEFS Structural Model 

a) NNN Sample 

 
b) Standardization Sample 

 
 
 
 



 

 

Figure 5 
 

Recognition Factor Scores as a Function of Age in the NNN Sample 
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Table 1 

 

Patient Characteristics 

Characteristic N Mean (SD) 

Age1 5000 57.04 (18.57) 

Education2 685 14.82 (2.65) 

   

Characteristic N Percent 

Sex   

  Male 2376 47.5% 

  Female 2615 52.3% 

  Intersex 3 0.1% 

  None of these describe me 6 0.1% 

Race     

 White 4014 80.3% 

 Black 597 11.9% 

 Asian 103 2.1% 

 Native Hawaiian/Other Pacific 

Islander 

3 0.1% 

 Native American/Alaskan Native 16 0.3% 

 Other 95 1.9% 

 Unknown 145 2.9% 

 Prefer Not to Answer/Declined to 

Specify 

27 0.5% 

Ethnicity     

  Hispanic or Latino 176 3.5% 

  Not Hispanic or Latino 4648 93.0% 

  Unknown/Missing 176 3.5% 

Notes. 1Age was recoded as 90 for those with age > 89.  2Education was 

coded using an adaptation of the PhenX Toolkit; a score of 14 indicates 

an Associate’s Degree and 15 indicates completion of 3 years but not 

graduating from college (full code available at www.nnn.ucla.edu).  
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